un 2 00 6 Coincidence free pairs of maps Ulrich Koschorke
نویسنده
چکیده
This paper centers around two basic problems of topological coincidence theory. First, try to measure (with help of Nielsen and minimum numbers) how far a given pair of maps is from being loose, i.e. from being homotopic to a pair of coincidence free maps. Secondly, describe the set of loose pairs of homotopy classes. We give a brief (and necessarily very incomplete) survey of some old and new advances concerning the first problem. Then we attack the second problem mainly in the setting of homotopy groups. This leads also to a very natural filtration of all homotopy sets. Explicit calculations are carried out for maps into spheres and projective spaces. 2000 Mathematics Subject Classification. Primary 55 M 20. Secondary 55 Q 40, 57 R 22.
منابع مشابه
Coincidence Free Pairs of Maps
This paper centers around two basic problems of topological coincidence theory. First, try to measure (with the help of Nielsen and minimum numbers) how far a given pair of maps is from being loose, i.e. from being homotopic to a pair of coincidence free maps. Secondly, describe the set of loose pairs of homotopy classes. We give a brief (and necessarily very incomplete) survey of some old and ...
متن کاملMinimizing coincidence numbers of maps into projective spaces
In this paper we continue to study (‘strong’) Nielsen coincidence numbers (which were introduced recently for pairs of maps between manifolds of arbitrary dimensions) and the corresponding minimum numbers of coincidence points and pathcomponents. We explore compatibilities with fibrations and, more specifically, with covering maps, paying special attention to selfcoincidence questions. As a sam...
متن کاملMethods in Nielsen Coincidence Theory
In classical fixed point and coincidence theory the notion of Nielsen numbers has proved to be extremely fruitful. Here we extend it to pairs (f1, f2) of maps between manifolds of arbitrary dimensions. This leads to estimates of the minimum numbers MCC(f1, f2) (and MC(f1, f2), resp.) of pathcomponents (and of points, resp.) in the coincidence sets of those pairs of maps which are homotopic to (...
متن کاملNonstabilized Nielsen coincidence invariants and Hopf--Ganea homomorphisms
In classical fixed point and coincidence theory the notion of Nielsen numbers has proved to be extremely fruitful. We extend it to pairs (f1, f2) of maps between manifolds of arbitrary dimensions, using nonstabilized normal bordism theory as our main tool. This leads to estimates of the minimum numbers MCC(f1, f2) (and MC(f1, f2), resp.) of pathcomponents (and of points, resp.) in the coinciden...
متن کاملNielsen Coincidence Theory in Arbitrary Codimensions
Given two maps f1, f2 : M −→ N between manifolds of the indicated arbitrary dimensions, when can they be deformed away from one another? More generally: what is the minimum number MCC(f1, f2) of pathcomponents of the coincidence space of maps f ′ 1 , f ′ 2 where f ′ i is homotopic to fi, i = 1, 2 ? Approaching this question via normal bordism theory we define a lower bound N(f1, f2) which gener...
متن کامل